
Adsorption phenomenon of neutral particles and a kinetic equation at the interface

G. Barbero1 and L. R. Evangelista2
1Dipartimento di Fisica del Politecnico di Torino and I.N.F.M., Corso Duca degli Abruzzi, 24–10129 Torino, Italy

2Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790–87020-900 Maringá, Paraná, Brazil
(Received 7 April 2004; published 17 September 2004)

The adsorption phenomenon of neutral particles in a sample having the shape of a slab is theoretically
investigated by using a particular form for the kinetic equation at the limiting surfaces. The time evolution of
the bulk and surface densities is determined in a closed form by means of a simple expression. A discussion on
the characteristic times entering in the problem is reported. Finally, a microscopic model giving rise to a kinetic
equation similar to the one used in the analysis is proposed, and the phenomenological parameters determined.
The analysis is suitable for the description of the adsorption phenomena of dyes in nematic liquid crystals.
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I. INTRODUCTION

In recent years several investigations on nematic liquid
crystals doped with dyes have been published[1–5]. The
main interest in this kind of research work is connected with
the possibility to modify the nematic orientation with light
[6–15]. According to the experimental studies, the dye ini-
tially dissolved in the nematic liquid crystal are selectively
adsorbed by the limiting surfaces, and oriented by the nem-
atic field. When the light incides on the surface covered by
the dyes, for the adsorption phenomenon, a structural trans-
formation is induced, which is responsible for the change of
the easy axis characterizing the substrate-nematic interface.
Preliminary studies on the adsorption phenomenon were pro-
posed in Refs.[16,17].

In the present paper we analyze, theoretically, the adsorp-
tion phenomenon, obtaining a closed solution for the time
evolution of the adsorbed dyes in terms of a series. We con-
sider a simple kind of kinetic at the limiting surface able to
reproduce the main characteristics of the problem. Different
regimes, according to the adsorption energies of the dyes, are
found. Furthermore, by means of a simple microscopic
model, based on the van der Waals interaction of the dye
molecule with the substrate, we show that it is possible to
justify the kinetic equation describing the adsorption phe-
nomenon. We show also how to connect the phenomenologi-
cal parameters entering in the kinetic equation with the pa-
rameters of the model. Our paper is organized as follows. In
Sec. II the mathematical problem for the diffusion in the
presence of adsorption-desorption is formulated. The rel-
evant equation for the eigenvalues is discussed in Sec. III,
whereas in Sec. IV the time evolution of the bulk and surface
density of the particles is derived in a closed form. In Sec. V
a microscopic model for the kinetic equation describing the
adsorption-desorption phenomenon is proposed. Section VI
is devoted to the conclusion.

II. THE MATHEMATICAL PROBLEM

We consider a sample in the shape of a slab of thickness
d. The Cartesian reference frame used in the analysis has the
z-axis perpendicular to the bounding surfaces, located atz

= ±d/2. The problem is supposed one dimensional, where all
physical quantities depend only on thez coordinates. If the
adsorption phenomenon from the surfaces is taken into ac-
count, the bulk density of particlesrsz,td is solution of the
diffusion equation

] r

] t
− D

]2r

] z2 = 0, s1d

whereD is the diffusion coefficient. The current density is, in
this case,j =−D]r /]z. If we consider identical surfaces, we
have furthermorersz,td=rs−z,td. The surface density of ad-
sorbed particles will be denoted bys=sstd. The require-
ments to be fulfilled are expressed by

2sstd +E
−d/2

d/2

rsz,tddz= r0 d, s2d

and js−d/2 ,td=ds /dt [18], wherer0=rsz,t=0d is the initial
homogeneous density across the sample. To investigate the
physical consequences of the phenomenon of adsorption, a
kinetic equation at the limiting surfaces has to be imposed. A
widely used balance equation at the boundary is[19]

ds

dt
= k rs− d/2,td −

1

t
sstd, s3d

wherek andt are parameters describing the adsorption phe-
nomenon. Equation(3) simply states that the time variation
of the surface density of adsorbed particles depends on the
bulk density of particles just in front of the adsorbing sur-
face, and on the surface density of particles already ad-
sorbed. In Eq.(3), t has the dimension of time, whereask of
a length/time. Consequently, if the adsorption phenomenon is
present, there are two new intrinsic times,t andtk=d/2 k.

To solve the problem one assumes thatrsz,td=reqszd
+drsz,td, wherereqszd=limt→` rsz,td is the distribution of
the particles in the steady state. Hence, limt→` drsz,td=0.
We assume also thatsstd=seq+d sstd, where limt→` dsstd
=0. Simple considerations show thatreq is z independent.

In the limit t→`, from Eq. (3) one obtainsseq=k t req.
Equation(2), in the limit t→`, becomes 2seq+req d=r0d.
Consequently,req andseq are found to be
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req=
r0

1 + 2 k t/d
and seq=

kt/d

1 + 2kt/d
r0d. s4d

The time evolution ofdrsz,td and dssz,td can be now
determined. By substitutingrsz,td=req+drsz,td into Eq. (1)
one obtains

] sdrd
] t

= D
]2sdrd

] z2 , s5d

whose solution can be written in the form

drsz,td = o
b

Cb cossvb zd e−b2 t, s6d

wherevb=b /ÎD, with bÞ0. Moreover, by substituting the
expressions forrsz,td andsstd into Eq. (3), one has

dsdsd
dt

= kdr −
1

t
ds. s7d

By Eq. (6) and Eq.(7), one obtains

ds = Me−t/t + o
b

dsb e−b2t, s8d

where

dsb = k
Cb

t−1 − b2cossvbd/2d, s9d

and M must be determined by means of the condition con-
cerning the conservation of the number of particles.

III. THE EIGENVALUES OF THE MATHEMATICAL
PROBLEM

By substitutingrsz,td andsstd into Eq. (2) one gets

2 dsstd +E
−d/2

d/2

drsz,tddz= 0, s10d

that, for Eqs.(6) and (8), can be written as

M e−t/t + o
b
Fdsb +

Cb

vb

sinsvbd/2dG e−b2t = 0, s11d

from which, by taking into account Eq.(9), one obtainsM
=0 and tansvb d/2d=fk / sb2−t−1dgvb, which determines the
eigenvalues of the problem and can be rewritten as

tan Xb = S tD

4tk
D Xb

Xb
2 − tD/4t

, s12d

whereXb=vbd/2. In summary, three time scales govern the
entire phenomenon, namely,tD=d2/D, tk=d/2k, andt. The
eigenvalues of the problem depend on the two ratiostD /tk

andtD /t.
In a practical problem it is important to know the first

eigenvaluebÞ0 responsible for the lowest relaxation time
in the phenomenon under consideration. The function on the
right-hand side of Eq.(12) has a vertical asymptote atXb

=ÎtD /4t. If tD!t, Eq. (12) can be approximated by

Xb tan Xb=tD / s4tkd, showing thatXb depends ontD /tk. For
tD!tk, Xb,ÎtD /4tk. In this case(tD!t, tD!tk), one gets
b2=1/t. This means that when the diffusion process is a
rapid phenomenon, the time dependence of the particle dis-
tribution is t. In the opposite limit oftD@t, Eq. (12) gives
tan Xb=−st /tkdXb, whose solution isp /2,Xb,p, and the
relevant relaxation timetR is in the rangetD / s4p2døtR

øtD /p2. Finally, from Eq.(12) it follows that, for largeXb,
i.e., Xb@ÎtD /4t the eigenvalues areXn<n p.

IV. TIME EVOLUTION OF THE BULK AND SURFACE
DENSITIES

If the eigenvalues are known, one can calculate the coef-
ficients Cb appearing in Eq.(6) and determinedrsz,td and
dsstd. From rsz,td=req+drsz,td, written in the limit of t
→0, one hasdrsz,0d=2ft / stk+tdgr0=2 seq/d, that, by us-
ing Eq. (6), becomes

o
b

Cb cossvb zd =
2 seq

d
. s13d

The main problem is that the eigenvectorsub=cossvb zd are
not orthogonal. In this case one can orthogonalyze the set of
eigenvectors by a procedure similar to the Schmidt approach
[20]. By indicating the eigenvalues withb1sÞ0d, b2, b3, . . .,
bn, . . . onewrites ui =cossvbi

zd, whereui are linearly inde-
pendent. It is possible to setvi =li juj, whereli j =0 for i , j ,
and lii =1. Thus, the matrixL, of elementsli j is such that
det L=1. The coefficientsli j for i . j are determined by set-
ting

kviuv jl =E
−d/2

d/2

viszdv jszddz= 0, s14d

for i Þ j . The relation amongvi andui can be written in the
matrix form asv=Lu, from which ui =sL−1di j v j. Conse-
quently, if Eq.(13) is written asCbubszd=2 seq/d one gets
CbsL−1db j v j =2 seq/d, from where

CbsL−1db jkv juvkl =
2 seq

d
kvkl, s15d

with

kvkl =E
−d/2

d/2

vkszddz. s16d

Since viszd form a set of orthogonal functions,kv j uvkl
=Nkd jk, whereNk=kvkuvkl. Consequently, from Eq.(15), one
deduces thatsL−1dbkCb=s2 seq/ddkvkl /Nk. In the matrix
form one has for the preceding equation,

C =
2seq

d
LT R, s17d

where R is the vector of elementsRk=kvkl /Nk and Lb,a
T

=La,b. The coefficients one is looking for are then given by
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Cb =
2 seq

d
LabRa, s18d

which represents the solution of the problem. There is an-
other way to obtain explicit formulas connectingvq with uq,
which gives directly the elements of the matrixL, and, con-
sequently, the coefficientsCb. According to this alternative
procedure the orthogonal vectorsvkszd are defined in terms
of the vectorsunszd by [21]

vq = o
n=1

q
Mnq

Mqq
un, s19d

whereMnq is the minor of the element

dnq =E
−d/2

d/2

unszduqszddz

in the determinantDq defined as

D1 = d11,

D2 = Ud11 d12

d21 d22
U ,

D3 = *d11 d12 d13

d21 d22 d23

d31 d32 d33
*, etc.

This alternative way is more suitable to be numerically
implemented.

To study the time evolution of the densities, it is useful to
rewrite the final equations governing them. The coefficient of
the cosine in(9) can be set in the form

k
Cb

t−1 − b2 =
d

2
S tD

4tk
D Cb

S tD

4t
− Xb

2D ,

which, by using(12), can be cast in the final form,

k
Cb

t−1 − b2 = −
d

2

tan Xb

Xb

Cb.

This permits to rewrite(9) as

dsb = −
d

2

sin Xb

Xb

Cb,

giving for sstd the rescaled form,

2 sst*d
d

= r0
r1/r2

1 + r1/r2
− o

b

sin Xb

Xb

Cb e−Xb
2 t* , s20d

where r1=tD /4tk, r2=tD /4t, and t* =4t /tD. In the same
manner, by considering thatreq=r0−2seq/d, and using(6),
one obtains

rsZ,t*d = r0
1

1 + r1/r2
+ o

b

Cb cossXbZd e−Xb
2 t* , s21d

where −1øZ=2z/dø1.
In Fig. 1 the behavior ofrsZ,t*d /r0 vs Z, as predicted by

Eq. (21), is shown for a significant set of parameters giving
the ratios of the characteristic times entering in the problem.
The curves show that asr2 increases in comparison withr1,
i.e., as the importance ofk decreases when compared witht,
there is an increasing accumulation of particles near the sur-
faces, placed atZ= ±1. This indicates that the time charac-
terizing the adsorption phenomenon, represented bytk, be-
comes increasingly large, leading to an accumulation of
particles(not adsorbed) near the limiting surfaces.

In Fig. 2 the behavior of 2sstd /r0d, as predicted by Eq.
(21), is shown as a function of the rescaled timet* =4t /tD for
three representative set of ratiosr1 and r2. Solid curve was

FIG. 1. Behavior ofrsZ,t*d /r0

vs Z, as predicted by Eq.(21) for
t* =4t /tD=0.01. The curves are
depicted for a representative set of
the parametersr1 and r2. Solid
line corresponds tor1=10.0 and
r2=1.0, dotted line tor1=1.0 and
r2=1.0, dashed line tor1=1.0 and
r2=5.0, and dashed dotted line to
r1=1.0 andr2=10.0.
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depicted for r1=10 and r2=1, i.e., for tD=4t=40tk. The
curve indicates that the characteristic time governing the be-
havior of sstd is such thatt* =4t /tD<1. For this case, nu-
merical calculations give the first nonzero eigenvalue asX1
=1.5, tD<4, and t<1 and tk<0.10. Therefore, the time
behavior ofsstd is governed byt which is the greatest one
amongt and tk. Dotted curve was depicted forr1=r2=1.0,
i.e., for tD=4t=4tk. The first nonzero eigenvalue isX1
=1.21,tD<4, andtk,t<1. In this case, both characteristic
times are important for the behavior ofsstd. Dashed curve
refers tor1=1 and r2=5, i.e., for tD=20t=4tk. Numerical
calculations giveX1=2.01, tD<3.5, andtk<0.9 e t<0.2.
In this case, the time behavior ofsstd is governed bytk.

The entire analysis, carried out with the help of numerical
calculations, shows that, as expected on analytical grounds,
the time behavior of the surface density of particles is gov-
erned by the largest one among the two characteristic times
tk andt whentD is kept unchanged.

V. MICROSCOPIC MODEL FOR THE KINETIC
EQUATION RELEVANT TO THE

ADSORPTION-DESORPTION PHENOMENON

In a real problem one has a specie of particles interacting
with the limiting surfaces via van der Waals forces, whose
potential energyUszd is strongly localized close to the
bounding surfaces[22]. In this situation, when the surfaces
are absent, the density of particles is homogeneous across the
sample. However, when the surfaces are switched-on, i.e.,
the interaction between the particles and the substrate is
present, a current of drift takes place close to the boundary
until the diffusion current balances the drift current. Our aim
is now to show that the drift-diffusion problem in a system
characterized by a potential localized on mesoscopic lengths
close to the boundary can be used to interpret the kinetic
equation at the adsorbing surface.

It is supposed thatUszd can be approximated by

Uszd = 5 U1szd = hsz+ z*d, − d/2 ø zø z1,

UBszd = 0, z1 ø zø z2,

U2szd = − hsz− z*d, z2 ø zø d/2,

s22d

where h=dU/dz=U0/l, z1=−z* , and z2=z* , with z* =d/2
−l.

The problem under consideration concerns two surface
layers wheredUszd /dz=const, and a bulk region where
Uszd=0, and the current reduces to the diffusion current. The
continuity equations in the three regions are

] ra

] t
= −

] ja

] z
, s23d

in the respectivez regions, wherea=1, B, 2 and

ja = − SD
] ra

] z
+ «amhraD s24d

with «1=1, «B=0, and«2=−1. Equation(23) must be solved
with the boundary conditions

r1sz1,td = rBsz1,td and rBsz2,td = r2sz2,td, s25d

for what concerns the densities, and

j1s− d/2,td = 0, j1sz1,td = jBsz1,td,

jBsz2,td = j2sz2,td, j2sd/2,td = 0 s26d

for what concerns the currents. By setting againrasz,td
=req aszd+drasz,td, one obtains, by taking into account(25),

req aszd = p expf− m Uaszd/Dg. s27d

The constantp is deduced by imposing

FIG. 2. Behavior of
2sst* d /r0d vs t* =4t /tD. Solid
line was depicted forr1=10.0 and
r2=1.0, dotted line forr1=1.0 and
r2=1.0, and dashed line forr1

=1.0 andr2=5.0.
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E
−d/2

d/2

reqszddz= r0 d. s28d

By using Eq.(27) and the Einstein-Smoluchowsky relation
m /D=1/kBT, we have

p = r0H1 +
2l

d
FeU0/kBT − 1

U0/kBT
− 1GJ−1

. s29d

The functionsdrasz,td are solutions of the differential equa-
tions

] sdrad
] t

= D
]2sdrad

] z2 − «amh
] sdrad

] z
, s30d

which are the continuity equations for the three layers.
For simplicity, in the analysis reported above, it is as-

sumed that there is no adsorption on the limiting surfaces.
However, since at the end, in the steady state, the density of
the particles close toz= ±d/2 will be larger than the one in
the bulk, the considered system is, actually, a model for the
adsorption. By comparing the results of the present analysis
with the analysis of the adsorption from the surfaces, it is
possible to connect the phenomenological parametersk and
t appearing in Eq.(3) with the microscopic parametersU0
and l. According to Eq.(27), in the steady state the bulk
density of particles isreq=req B=r0/ s1+2Rd, where, for Eq.
(29),

R=
l

d
FeU0/kBT − 1

U0/kBT
− 1G . s31d

Close to the bounding walls, for Eq.(27), the profiles of the
particles density arereq a=p expf−Uaszd /kBTg. Sincel!d
it is possible to introduce a surface density of particles by
means of the relation

seq 2=E
z2

d/2

freq 2szd − req Bszdgdz, s32d

and a similar relation forseq 1. Simple calculations give
seq 1=seq 2=seq, whereseq=fR/ s1+2Rdgr0d.

By comparingreq and seq obtained above with the ones
given by (4) one obtains

kt = lFeU0/kBT − 1

U0/kBT
− 1G . s33d

In order to show that the system under consideration implies
a kinetic equation at the surface of the kind(3), we define an
effective surface densitysstd by means of the relation

s2 =E
z2

d/2

fr2sz,td − rBsz,tdg dz< E
z2

d/2

r2sz,tddz, s34d

becausel is a mesoscopic length. We assume that in the
surface layer the bulk density is well approximated by

r2sz,td = r2sz2,td + S ] r2

] z
D

z2

sz− z2d. s35d

By substituting(35) into (34) we get

S ] r2

] z
D

z2

, 2
s2

l2 . s36d

Furthermore, from(34) by derivation with respect tot we
have

ds2

dt
, E

z2

d/2 ] r2

] t
dz, s37d

that by using Eq.(23), the boundary conditions, Eqs.(25),
(26), and(36) can be rewritten as

ds2std
dt

= m hrBsz2,td −
2 D

l2 s2std, s38d

which coincides with the kinetic equation written on phe-
nomenological ground at the adsorbing surface, i.e., Eq.(3).
Hence, by comparing Eq.(38) with Eq. (3) we deduce that
k=m h and 1/t=2D /l2. Therefore k t /l=U0/ s2 kBTd,
which coincides with the power expansion of Eq.(33) in the
limit of U0!kBT. With this type of analysis it is possible to
connect, separately,k andt with the microscopic parameters
of the modelU0 andl. In particular,t is of the order of the
diffusion time of the particles in the surface layer[23].

To compare the predictions of our model with the experi-
mental results is a difficult task for the following reason. The
adsorption phenomenon is expected to play an important role
on the surface properties of nematic liquid crystals doped
with dyes, as discussed in the Introduction. However, no ex-
periments on the time dependence of the surface concentra-
tion of dyes have been published until now. The experimen-
tal analysis quoted in the Introduction usually refer to the
steady state, whens has reachedseq. We hope that our the-
oretical investigation can stimulate research work in this di-
rection.

On the contrary, the time dependence of the adsorption
phenomenon has been considered to analyze the influence of
the ions on the optical transmission of a nematic cell submit-
ted to an external electric field. According to Zhang and
D’Have’ k,10−6 m/s andt,10−3 s [24]. By assumingD
,10−12 m2/s, as reported by Sawadaet al. [25], for large
ions, we obtainU0/ skBTd,0.1 andl,10 nm. These values
are quite reasonable when the adsorbed particles are ions in a
nematic liquid crystal having an average dielectric constant
of the order of 20e0, wheree0 is the dielectric constant of the
vacuum. We are aware that this system is rather different
from the one considered in our analysis, because in this case,
in the bulk also a drift current is present. However, since for
this system the proposed model predicts reasonable values
for the adsorption energy and for the range of the surface
forces, our assumptions are probably correct.

VI. CONCLUSION

We have theoretically analyzed the diffusion phenomenon
in a sample in the shape of a slab, in the presence of the
adsorption-desorption phenomenon. The kinetic equation on
the limiting surfaces describing the adsorption process is as-
sumed to have two terms. One proportional to the bulk den-
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sity of particles just in front to the adsorbing surfaces and
another one proportional to the surface density of particles
already adsorbed. The first term gives a positive contribution,
whereas the second term gives a negative contribution to the
time variation of the surface density of adsorbed particles.
We evaluated the time variation of the bulk and surface den-
sity of particles, and the characteristic times entering in the

problem. Finally, by means of a simple microscopic model
we have justified the kinetic equation used in our analysis
and evaluated the phenomenological parameters entering in
the kinetic equation at the interfaces. Our model predicts for
the case in which the adsorbed particles are ions dissolved in
a nematic liquid crystal reasonable values for the adsorption
energy and range of the surface forces.
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